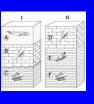
Lesson – Radioactive Dating

THE FOLLOWING VIDEO HAS BEEN APPROVED FOR ALL AUDIENCES BY THE EARTH SCIENCE TEACHERS ASSOCIATION OF AMERICA , INC

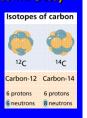


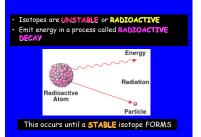
- I can explain absolute dating
- I understand what half life means
- I can use the Radioactive Decay chart on the ESRT
- I can answer radioactive decay questions

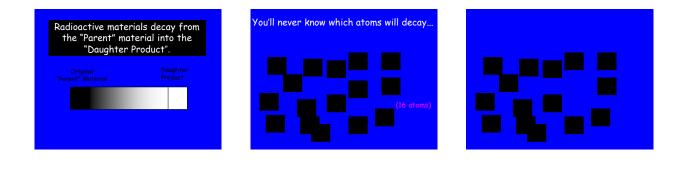
Review:

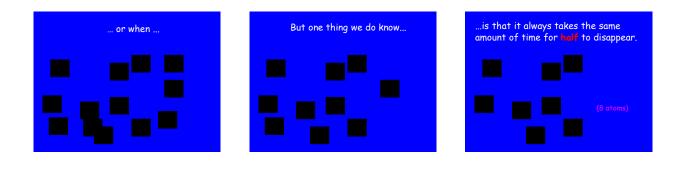
1. List the layers from oldest to youngest

- 2. Name 2 processes that produced the unconformity in outcrop I
- 3. Describe the 2 characteristics a fossil must have to be considered a good index fossil.

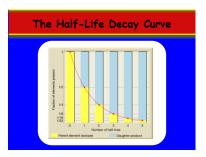


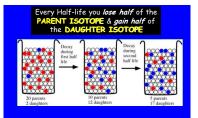

Absolute Dating


- Numerical age of rocks & other objects
- Examples:
- Radioactive Dating
- Counting Tree Rings


Isotopes & Radioactive Decay

ELEMENT Substance of atoms that are chemically alike -Elements exist in several forms called ISOTOPES Ex: Carbon-12 & Carbon-14





- I can explain absolute dating
- I understand what half life means
- I can use the Radioactive Decay chart on the ESRT
- I can answer radioactive decay questions

Half-life Time required for HALF of the atoms in a given mass of an isotope to DECAY

• I can explain absolute dating

- I understand what half life means
- I can use the Radioactive Decay chart on the ESRT
- I can answer radioactive decay questions

Radioactive Decay Data						
RADIOACTIVE ISOTOPE	DISINTEGRATION	HALF-LIFE (years)				
Carbon-14	$C^{14} \rightarrow N^{14}$	$5.7 imes 10^3$				
Potassium-40	К ⁴⁰ Са ⁴⁰	$1.3 imes 10^9$				
Uranium-238	U ²³⁸ → Pb ²⁰⁶	4.5×10^9				
Rubidium-87	Rb ⁸⁷ → Sr ⁸⁷	4.9 × 10 ¹⁰				
PARENT	DAUGHTER					

Scientific Notation to Normal #						
Count the # of times the DECIMAL needs to be moved to RIGHT for each power of ten and ADD ZEROS						
2) 3.5 X 106	>	3,500,000				
3) 1.1 X 104		11,000				

Radio	active Decay	y Data			
RADIOACTIVE ISOTOPE	DISINTEGRATION	HALF-LIFE (years)			
Carbon-14	$\text{C}^{14} \rightarrow \text{N}^{14}$	5.7 × COUGAR			
Potassium-40	K ⁴⁰ Ca ⁴⁰				
Uranium-238	U ²³⁸ → Pb ²⁰⁶				
Rubidium-87	Rb ⁸⁷ → Sr ⁸⁷	4.9 XING Years			
Carbon-14 • SHORT half-life • Used to DATE RECENT ORGANIC REMAINS Uranium-238 • LONG half life • Used to DATE OLD ROCKS (age of Earth)					

Each half-life, the parent isotope gets cut in half.							
One half-life			fe				
	\rightarrow						

• I can explain absolute dating

- I understand what half life means
- \cdot I can use the Radioactive Decay chart on the ESRT
- I can answer radioactive decay questions