- I can name the shape of the Earth
- I can describe gravity
- I can explain gravity's effects on an orbit
- I can calculate eccentricity
- I can explain Kepler's $2^{\text {nd }}$ law of planetary motion

Evidence of Earths Shape

1. Photographs from outer space

2. The altitude of Polaris changes with a person's latitude.

If Earth was flat altitude of Polaris would NOT change!

Gravity

- The force of attraction between objects. Depends on mass \& distance.
Newton's Law of Gravitation -
Object's close to the focus have:
- Strong gravitational pull
- Faster velocity
- Takes less time to orbit (revolve) the sun

3. Gravity Measurements

Gravity is the force of attraction between any two objects
Bigger the object-stronger the pull

Closer the centers of two objects stronger the pull.
4. Ships appear to sink as they sail away towards the horizon

- I can name the shape of the Earth
- I can describe gravity
- I can explain gravity's effects on an orbit
- I can calculate eccentricity
- I can explain Kepler's $2^{\text {nd }}$ law of planetary motion

What shape is the Earth?

- The Earth bulges at the Equator and is slightly flattened at the Poles

Always choose the roundest and smoothest object or drawing for Earth's shape.

- I can name the shape of the Earth
- I can describe gravity
- I can explain gravity's effects on an orbit
- I can calculate eccentricity
- I can explain Kepler's $2^{\text {nd }}$ law of planetary motion

Gravity \& Orbits

- A satellite is any object that revolves around another object.
- It's gravity that keeps the planets \& all satellites in orbit.
- Earth moves fastest when it's closest to the sun.

What time of year does Earth move slowest?
Which planet do you think moves slowest?

The constructed ellipse below is a true scale model of the orbit of a planet in our solar system. What is the eccentricity of this planet?

- I can name the shape of the Earth
- I can describe gravity
- I can explain gravity's effects on an orbit
- I can calculate eccentricity
- I can explain Kepler's $2^{\text {nd }}$ law of planetary motion

Law \#2: A line joining a planet \& it's star marks equal areas during equal time

- Planet is close to focus (star)
- Fasier orbital velocity (speed)
- Planet is far from focus
- Slower velocity

- I can name the shape of the Earth
- I can describe gravity
- I can explain gravity's effects on an orbit
- I can calculate eccentricity
- I can explain Kepler's $2^{\text {nd }}$ law of planetary motion

